Genetic damage and oxidative stress in patients with chronic kidney disease and type 2 diabetes mellitus: a scoping review
Keywords:
Chronic kidney disease, type 2 diabetes mellitus, comet assay, genetic damageAbstract
Introduction: Type 2 diabetes mellitus is one of the leading causes of chronic kidney disease (CKD) in Paraguay, a public health issue that significantly affects patients’ quality of life. This scoping review examines the relationship between DNA damage and hemodialysis treatment in patients with CKD and type 2 diabetes, a population with high prevalence and risk of associated complications. The primary objective was to synthesize the scientific evidence on the level of genotoxic damage in diabetic patients with CKD undergoing hemodialysis. Methodology: Twelve studies published since 2010 were selected, primarily using the comet assay to measure DNA damage, supplemented in some cases by other bioassays to assess oxidative damage and inflammatory biomarkers. The methodology included searches in Google Scholar with specific keywords, selection based on rigorous inclusion criteria, and manual analysis supported by artificial intelligence tools for data extraction. Results: The results show significantly higher genetic damage in CKD patients on hemodialysis compared to healthy controls, though with conflicting findings regarding the direct impact of hemodialysis on DNA damage. Factors such as duration, frequency, and modality of dialysis, as well as individual DNA repair capacity, influence the level of damage detected. Certain modalities, such as hemodiafiltration and peritoneal dialysis, showed potential to reduce genotoxic damage. Conclusion: Genetic damage appears to be an inherent feature of CKD, with hemodialysis possibly amplifying this effect under certain conditions. The need for further research to clarify these relationships and optimize clinical strategies to mitigate DNA damage in this vulnerable population is emphasized.
Downloads
References
1. Tung, G.K., Gandhi, G. Baseline and oxidatively damaged DNA in end-stage renal disease patients on varied hemodialysis regimens: a comet assay assessment. Mol Cell Biochem 479, 199–211 (2024). doi: 10.1007/s11010-023-04720-4
2. Abudawood M, Tabassum H, Almaarik B, Aljohi A. Interrelationship between oxidative stress, DNA damage and cancer risk in diabetes (Type 2) in Riyadh, KSA. Saudi J Biol Sci. 2019;27(1):177-83. doi: 10.1016/j.sjbs.2019.06.015
3. Corredor Mancilla ZF, Stoyanova E, Rodríguez-Ribera L, Coll E, Silva I, Díaz JM, et al. Genomic damage as a biomarker of chronic kidney disease status. Environ Mol Mutagen. 2015; 56(3): 301-12. doi: 10.1002/em.21911
4. Corredor Mancilla ZF, Rodríguez-Ribera L, Silva I, Díaz JM, Ballarín J, Marcos R, et al. Levels of DNA damage in peripheral blood lymphocytes of patients undergoing standard hemodialysis vs on-line hemodiafiltration: A comet assay investigation. Mutat Res Genet Toxicol Environ Mutagen. 2016; 808: 1-7. doi: 10.1016/j.mrgentox.2016.07.008
5. Mamur S, Yuzbasioglu D, Altok K, Unal F, Deger SM. Determination of genotoxic effects in hemodialysis patients with chronic kidney disease and the role of diabetes mellitus and other biochemical parameters. Mutat Res Genet Toxicol Environ Mutagen. 2019; 844: 46–53. doi: 10.1016/j.mrgentox.2019.05.014
6. Franco de Diana D, Segovia Abreu J, Cabrera W, Castiglioni D, López Acosta N, Urdapilleta N, et al. Ensayo del cometa como bioindicador de inestabilidad genómica en pacientes diabéticos hemodializados. An Fac Cienc Méd (Asunción). 2022; 55 (1): 27–38. https://revistascientificas.una.py/index.php/RP/article/view/2490
7. Yüzbaşıoğlu Y, Hazar M, Aydın Dilsiz S, Yücel C, Bulut M, Cetinkaya S, et al. Biomonitoring of oxidative-stress-related genotoxic damage in patients with end-stage renal disease. Toxics. 2024; 12: 69. doi:10.3390/toxics12010069
8. Eremina NV, Durnev AD. Genotoxic biomarkers in patients on hemodialysis. Ecological Genetics. 2020; 18(3): 367-89. doi:10.17816/ecogen26281
9. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467-73.
10. Peters MD, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Synth. 2020;18 (10): 2119-26. doi: 10.11124/JBIES-20-00167
11. Verdejo C, Tapia-Benavente L, Schuller-Martínez B, Vergara-Merino L, Vargas-Peirano M, Silva-Dreyer AM. What you need to know about scoping reviews. Medwave. 2021; 21 (02): e8144. doi: 10.5867/medwave.2021.02.8144
12. Khalil H, Peters MD, Tricco AC, Pollock D, Alexander L, McInerney P, et al. Conducting high quality scoping reviews-challenges and solutions. J Clin Epidemiol. 2021; 130: 156-60. doi:
10.1016/j.jclinepi.2020.10.009
13. Coimbra S, Santos-Silva A, Costa E, Bronze-da-Rocha E. DNA Damage in End-Stage Renal Disease Patients. Assessment by In Vitro Comet Assay and by Cell-Free DNA Quantification. InTech; 2018. doi:10.5772/intechopen.71319
14. Ersson C, Odar‐Cederlöf I, Fehrman‐Ekholm I, Möller L. The effects of hemodialysis treatment on the level of DNA strand breaks and oxidative DNA lesions measured by the comet assay. Hemodial Int. 2013;17(3): 366-373. doi: 10.1111/hdi.12008
15. Gandhi G, Mehta T, Contractor P, Tung G. Genotoxic damage in end-stage renal disease. Mutat Res Genet Toxicol Environ Mutagen. 2018; 836: 71–77. doi: 10.1016/j.mrgentox.2018.08.005
16. Passos-Palazzo R, Bagatini PB, Schefer PB, Andrade FMD, Maluf SW. Genomic instability in patients with type 2 diabetes mellitus on hemodialysis. Rev Bras Hematol Hemoter. 2012; 34:3 1-35. doi: 10.5581/1516-8484.20120011
17. Rangel-López A, Paniagua-Medina ME, Urbán-Reyes M, Cortes-Arredondo M, Álvarez-Aguilar C, López-Meza J, et al. Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study. Mutagenesis. 2013; 28 (2): 219-225. doi: 10.1093/mutage/ges075
18. Stoyanova E, Azqueta A, Rodríguez-Ribera L, Coll E, Silva I, Díaz JM, et al. Base excision repair capacity in chronic renal failure patients on hemodialysis: effect of time on treatment, folate status and association with DNA damage. Mutagenesis. 2014; 29 (4): 257–265. doi: 10.1093/mutage/geu016
19. Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, et al. Measuring DNA modifications with the comet assay: A compendium of protocols. Nature Protocols. 2024; 18 (3): 929–989. doi: 10.1038/s41596-022-00754-y
20. Zalacain M, Sierrasesúmaga L, Patiño A. The cytogenetic assay as a measure of genetic instability induced by genotoxic agents. Anales del Sistema Sanitario de Navarra. 2005; 28 (2): 227-236. doi: 10.4321/s1137-66272005000300007
21. Fenech M. The micronucleus assay determination of chromosomal level DNA damage. Methods Mol Biol. 2008; 410: 185-216. doi: 10.1007/978-1-59745-548-0_12.
22. Rodríguez-Ribera L, Stoyanova E, Corredor ZF, Silva I, Díaz JM, Ballarín J, et al. Time in hemodialysis modulates the levels of genetic damage in hemodialysis patients. Environmental and Molecular Mutagenesis. 2014; 55(6): 353–368. doi: 10.1002/em.21849
23. Maduell F, Broseta JJ, Rodríguez-Espinosa D, Rodas LM, Gómez M, Arias-Guillén M. Comparison of efficacy and safety of the new generation helixone dialyzers. Nefrología. 2024; 44(3): 354–361. doi: 10.1016/j.nefroe.2024.04.005
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Revista científica de la Facultad de Ciencias de la Salud de la Universidad Católica de Asunción

This work is licensed under a Creative Commons Attribution 4.0 International License.

